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Picosecond Thermal Pulses in Thin Gold Films 
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In this paper it has been shown that, with the advent of lasers with a very short 
pulse duration, the effect of thermal wave propagation becomes important. To 
consider this effect, hyperbolic heat conduction in thin gold films was studied. 
It was shown that for heat fluxes of the order 10 s W - c m  -2, a thermal wave is 
generated in thin gold films. The consideration of the hyperbolicity of heat 
transfer enables one to describe the temperature profile with one value of 
fluence. 
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films. 

1. I N T R O D U C T I O N  

Heat transport during fast laser heating of solids has become a very active 
research area due to the significant applications of short pulse lasers in the 
fabrication of sophisticated microstructures, syntheses of advanced 
materials, and measurements of thin-film properties. Laser heating of 
metals involves the deposition of radiation energy on electrons, the energy 
exchange between electrons and the lattice and the propagation of energy 
through media. 

Ultrafast dynamics of hot electrons in metals has become an area of 
active investigation. The theoretical predictions showed that under ultrafast 
excitation conditions the electrons in a metal can exist out of equilibrium 
with the lattice for times of the order of the electron energy relaxation 
time [ 1 ]. Model calculations suggest that it should be possible to heat the 
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electron gas to a temperature T~ of up to several thousand K for a few 
picoseconds, while keeping the lattice temperature T I relatively cold. Obser- 
ving the subsequent equilibration of the electronic system with the lattice 
allows one to study directly electron-phonon coupling under various con- 
ditions. 

Several groups have undertaken investigations relating dynamics 
changes in the optical constants (reflectivity, transmissivity) to relative 
changes in electronic temperature. But only recently, the direct measure- 
ment of electron temperature has been reported. 

In an earlier investigation [ 1 ], the temperature of hot electron gas in 
thin gold film (I= 300 A) was measured, and a reproducible and systematic 
deviation from a simple Fermi-Dirac (FD) distribution for short time 
A t  ~ 0.4 ps were obtained. As stated in Ref. 1, this deviation arises due to 
the finite time required for the nascent electrons to equilibrate to a FD dis- 
tribution. The nascent electrons are the electrons created by the direct 
absorption of the photons prior to any scattering. 

In this paper, we investigate the relaxation dynamics of the electron 
temperature with the hyperbolic heat conduction equation (HHC) [2]. 
Conventional laser heating processes which involve a relatively low energy 
flux and long laser pulse have been succesfully modeled in metal processing 
and in measuring thermal diffusivity of thin films [3]. However, 
applicability of these models to short-pulse laser heating is questionable 
[ 1]. As is well-known, the Anisimov model [3] does not properly take 
into account the finite time for the nascent electrons to relax to the FD dis- 
tribution. In the Anisimov model, the Fourier law for heat diffusion in the 
electron gas is assumed. However, the diffusion equation is valid only when 
the relaxation time is zero, r = 0, and the velocity of the thermalization is 
infinite v--, ~ .  

In this paper, we use the HHC in which the relaxation time is finite 
and not equal to zero. For metals r ~< 1 ps. The heat propagation velocity 
is equal to the sound velocity in the electron gas and is of the order 
,,~ 1/tm.ps-~. In our study the HHC is applied to the investigation of heat 
transfer in low dimensional structures (LDS), i.e., the structures for which 
the characteristic dimension, l, is of the order of the mean free path for 
charge carriers (e.g., electrons). As it is shown in Ref. 2, for short delay 
times the heat is transferred in the form of heat waves which propagate in 
LDS with the sound velocity. In this paper it is shown that in LDS the 
nonequilibrium temperature pulses (temperature waves) generated by 
ultrafast (<l-ps) laser heating can be reflected from edges of LDS. 
Comparison of the calculated and observed in LDS temperature waves 
offers new possibility for the study of the dynamics of hot electrons in 
low-dimensional structures. 
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2. NONEQUILIBRIUM TRANSPORT OF HOT ELECTRON IN 
THIN METAL FILMS 

The effects of ultrafast heat transport can be observed in the results of 
front-pump back-probe measurments [1]. The results of these type 
experiments can be summarized as follows. First, the measured delays are 
much shorter than would be expected if the heat were carried by the diffu- 
sion of electrons in equilibrium with the lattice (tens of picoseconds). This 
suggests that the heat is transported via the electron gas alone and that the 
electrons are out of equilibrium with the lattice on this time scale. Second, 
since the delay increases approximately linearly with the sample thickness, 
the heat transport velocity can be extracted Vh "" 108 cm. s-1 = 1 It m .ps- i .  
This is of the same order of magnitude as the Fermi velocity of electrons 
in Au, 1.4 p m.  ps -  i. 

Since the heat moves at a velocity comparable to vv,  the Fermi 
velocity of the electron gas, it is natural to question exactly how the 
transport takes place. Since those electrons which lie close to the Fermi 
surface are the principal contributors to transport, the heat-carrying 
electrons move at Vv. In the limit of lengths longer than the momentum 
relaxation length, 2, the random walk behavior is averaged and the elec- 
tron motion is subject to a diffusion equation. Conversely, on a length 
scale shorter than 2, the electron move ballistically with velocity close 
to 01=. 

The importance of the ballistic motion may be appreciated by 
considering the different hot-electron scattering lengths reported in the 
literature. The electron-electron scattering length in Au, 2e~ has been 
calculated in Ref. 4. They find that ~oe ~ ( E -  Ev) 2 for electrons close to the 
Fermi level. For 2-eV electrons 2~ ~ 35 nm, increasing to 80 nm for 1 eV. 
The electron-phonon scattering length 2r is usually inferred from conduc- 
tivity data. Using Drude relaxation times [ 5 ], 2~p can be computed, ).~p 
42nm at 273 K. This is shorter than ).r162 but of the same order of 
magnitude. Thus, we would expect that both electron-electron and 
electron-phonon scattering are important on this length scale. However, 
since conductivity experiments are steady-state measurements, the con- 
tribution of phonon scattering in a femtosecond regime experiment, such as 
pump-probe ultrafast lasers, is uncertain. 

In the usual electron-phonon coupling model [3], one describes the 
metal as two coupled subsystems, one for electrons and one for phonons. 
Each subsystem is in local equilibrium so the electrons are characterized by 
a FD distribution at temperature Tr and the phonon distribution is charac- 
terized by a Bose-Einstein distribution at the lattice temperature T~. The 
coupling between the two systems occurs via the electron-phonon interac- 
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tion. The time evolution of the energies in the two subsystems is given by 
the coupled parabolic differential equations (Fourier law). 

For ultrafast lasers the duration of pump pulse is of the order of 
relaxation time in metals [ 1-l. In that case the parabolic heat conduction 
equation is not valid and a new equation for hyperbolic heat conduction 
must be used [ 2 ]: 

1 02T 1 3T V2T, D r= rV2s 
o~ ot 2 + ~ ot 

(1) 

In Eq. (1), Vs is the thermal wave speed, r is the relaxation time, and Dr  
denotes the thermal diffusivity. In the following, Eq. (1) is used to describe 
the heat transfer in the thin gold films. 

To that aim we define Te is the electron gas temperature and TI is the 
lattice temperature. The govering equations for nonstationary heat transfer 
are 

OTe=DTV2T DTO2T~ G(T~--T,), OT'=G(T~-T,) (21 
Ot o s at'- & 

where D r is the thermal diffusivity, T~ is the electron temperature, T~ is the 
lattice temperature, and G is the electron-phonon coupling constant. In the 
following, we assume that on a subpicosecond scale, the coupling between 
electron and lattice is weak [1] and Eq. (2) can be replaced by the 
following equations: 

OTo Ot =DTV2T-Dx32r T1 = c~ (3) 
T. 

o~ 0t-'' 

Equation (3) describes nearly ballistic heat transport in a thin gold 
film irradiated by ultrafast (At < I ps) laser beam. 

The solution of Eq. (3) for 1D is given by 

T(x,t)=lfdx'T(x',O)[e-'/2~!oO(t-to) 

1 {io((t2-to)m ~ + e -,/23 ~ \ -~z J 

+ '  (("2~>"2)}O(t-to>] (4> (fl _ to ) )/2 Ii 

where v, is the velocity of second sound, to = (x--x')/v,, and I 0 and I~ are 
modified Bessel functions and O(t- to) denotes the Heaviside function. We 
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are concerned with the solution to Eq. (4) for a nearly delta function tem- 
perature pulse generated by laser irradiation of the metal surface. The pulse 
transferred to the surface has the shape: 

PpE 
A T 0 = - -  for O<<.x<vsAt 

Cvvs zlt (5) 

ATo=0  for x>~vsAt 

In Eq. (5), PE denotes the heating pulse fluence, fl ~s the efficiency of the 
asborption of energy in the solid, Cv(Te) is the electronic heat capacity, 
and At is the duration of the pulse. 

With t = 0 the temperature profile described by Eq. (5) yields 

1 ,/~ 
T(l, t) =~ AToe-  - O(t - to) O(to + At - t) 

A t e -  ~/2~ t 1 
+--~r ATo { Io(z) + ~ z l , ( z )  } O( t-- to) (6) 

where z = (fl - to)1/2/2~ and t =  l/vs. 
The solution to Eq. (3) when there are reflecting boundaries is the 

superposition of the temperature at l from the original temperature and 
from the image heat source at +_ 2nl. This solution is 

T(I, t) = ~ AToe-'/zTO(t - ti) O(ti+ At - t) 
i = 0  

At t 1 
+ ATo-~z e-t/2~ { lo(zi) + ~z ~ lt(zi) } O( t - t~) (7) 

where t; = to, 3to, 5to, to = l/vo. 
For gold, Cv(Te) = C~(T~) =yT~, 7=71.5 J .m -3. K -2, and Eq. (5) 

yields 

1.4 x 105 PEfl 
AT 0 -  for O<~x<vsAt 

v~ At T~ (8) 

AT0=0 for x>>.v~At 

where p~ is measured in m J . c m  -2, vs in l tm .ps  -~, and At in ps. For 
T c --- 300 K 

4.67 x 102 flPE 
ATo-- for O<~x<~vsAt 

vsAt (9) 

alTo=0 for x>~vsAt 
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Fig. I. Solutions of hyperbolic heat conduction (HHC) equation, Eq. (3). 

In Fig. 1, the solution of Eq. (3) with the boundary condition given by 
Eq.(9) for pE=0.2,  0.3, 0.4, 0.8, 1, 1.I, 1.5, 1.6, and 1 .7mJ .cm -2 is pre- 
sented. The curves were calculated for vs = 0.15,um. p s - l  and r = 0.12 ps. 
As can be easily seen for pE>0.2  mJ-cm -2, the temperature shows the 
oscillations. Moreover, the amplitude of the oscillations grows with the 
fluence of the laser beam. 

The solution of hyperbolic heat conduction equation, Eq. (7), contains 
two components: 

T~(I, t) = ~ AToe-'/2rO(t- tl) O(ti+ At--t) (10) 
i = 0  

,, } 
;=o 2--~e -'/-r Io(zi)+~rr--Ij(zl) O(t--t~) (11) 

The first component describes the thermal waves, which propagates with 
velocity vs and can be reflected from the edges of the irradiated film. These 
thermal waves are damped due to e-e collisions. The second component, 
expressed by Eq. (11 ), is the diffusion component which for t ~ oo tends to 
the solution of the parabolic diffusion equation (PHC; Fourier law). 

1 0 T  
D--~ 0--t- = V2T (12) 
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Solution of parabolic heat conduction (PHC) equation, Eq. (12). 

In Fig. 2, the solution of Eq. (12) is presented for PE =0.2,  0.3, 0.4, 0.8, 
1, 1.1, 1.5, 1.6, and 1.7mJ.cm -2. The structure in temperature profile 
observed for t < 2 ps (Fig. 1) is the result of the reflection of the thermal 
waves from the edges of the gold film. The peaks in temperature profiles 
are observed for t~ =//v~, t2 = 31/v~, and t 3 = 51/v,. The temperature profiles 
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Fig. 3. Comparison of  the solutions of  PHC and experimental data for a 30-nm Au film [ 1 ]. 
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Comparison of tile solutions of HHC and experimental data for a 30-nm Au film [ l ]. 

obtained as the solution of parabolic equation (Fig. 2) do not show any 
oscillations for short times. 

In Fig. 3, the comparison of the calculated parabolic temperature 
profiles and the measured one [ I ]  is presented. With the help of the 
standard diffusion theory, the experimental data cannot be described with 
the one value of fluence. In order to obtain the fairly good description, one 
needs two value of fluence PE ~ 1.5 and PE ~ 0.8 m J - c m - 2  

In Fig. 4, the comparison of the calculated hyperbolic temperature 
profiles and the measured one [ 1 ] is presented. With the help the hyper- 
bolic heat conduction equation, the experimental data can be satisfactorily 
described with the one value of fluence pE t 1 m J . c m  -2 The fluence 
1 mJ-cm -2 for a 400-fs duration pump pulse give heat flux of the order 
0 .25x l0~~  -2. Assuming, as in Ref. l, that 15% of the light 
was absorbed, one obtains for heat flux the value ~ .4x 108W.cm -2 
Considering the above, we can conclude that for the heat fluxes of the 
order 108W. cm -2 the effect of hyperbolic heat conduction is significant. 

3. CONCLUSION 

We have shown that with the advent of lasers with a very short pulse 
duration, the effect of thermal wave propagation velocity becomes impor- 
tant. To consider this effect, hyperbolic heat conduction in thin gold films 
is studied. It was shown that for heat fluxes of the order 108W. cm-- '  in 
thin gold film, the thermal waves are generated. The consideration of the 
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hyperbol ic i ty  of  heat  t ransfer  enables  one to descr ibe the t empera tu re  
profile with one value of  fluence. 
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